
1

Abstract— Earlier P2020 SEE data are compared and

expanded to a recent die revision, significantly increasing

samples tested by protons by five devices, and by heavy ions by

five devices. Earlier tested SEE types are found to be fairly

similar in register, L1 cache, L2 cache, and CPU crashes. New

test methods give SEE performance for the flash memory

controller, watchdog circuit, and a built-in Ethernet port on the

P2020 processor. Results from heavy ion and proton tests are

presented, with data separated over a large number of specific

error types and test programs.

I. INTRODUCTION

he P2020 processor is used in several space programs,

and is available from Space Micro in the Proton 400k-L

flight computer [1]. The processor uses an architecture that is

very similar to the RAD750 [2] – a radiation hardened

specialty processor for space, but is a much newer and more

powerful 45 nm dual core device that is built for the

commercial market. Similar testing has previously been

reported [3], but in the current case the increase in data is

significant and the data are now taken across multiple die

revisions of the P2020. Thus the present data may be

combined with the earlier data to create a more complete data

set, and enable programs to make a more compelling

argument for qualification of these devices.

 We tested five Freescale (now Qualcomm) P2020RDB-

PCA boards for proton single-event effects (SEE). We also

tested five different P2020RDB-PCA boards for heavy ion

SEE. Testing was performed over five test trips including the

Tri-University Meson Facility (TRIUMF), Massachusetts

General Hospital (MGH), Lawrence Berkeley National Lab

(LBNL), and Texas A&M University (TAMU).

This workshop proceeds as follows. We discuss the test

setup in section II. We follow this with proton results in

section III, then heavy ion results in section IV. The

workshop conclusion then follows in section V.

II. TEST SETUP

A. Test Boards and Support Equipment

Testing was performed using the P2020RDB-PCA. The

test boards were used to provide bias to the DUT because

earlier work showed no significant risk of power-related

issues when irradiating the processor. Each P2020RDB-PCA

was connected to a test interface computer that provided two

universal asynchronous receiver transmitter (UART) ports.

Each central processing unit (CPU) was provided its own

UART for direct communication of results during testing.

For proton testing there was no special preparation. But

for heavy ion testing it was necessary to remove the copper

heatspreader over the DUT. Our approach was to mill down

the DUT to expose the epoxy underneath. For clarification of

linear energy transfer values, we further removed the filler

epoxy inside the heatspreader by using acid. Initial efforts

were somewhat unreliable, and we determined that it was

necessary to attempt to remove the epoxy before any

particular board (DUT) was powered for a length of time and

the epoxy hardened.

Figure 1: Schematic of the test system. Note that the actual power
supply was the P2020RDB-PCA power unit. The system was not

monitored for SEL, and none was expected.

Testing was performed on the P2020RDB-PCA using a

custom hardware setup that allowed for a second computer to

interact with the P2020, with one UART (universal

asynchronous receiver transmitter) port assigned to each of

Towards a Qualification Data Set: Expanded

SEE Data on the P2020 Processor
Steven M. Guertin, Member, IEEE, and Sergeh Vartanian

T

Manuscript received August 23, 2017. The research in this paper was

carried out at the Jet Propulsion Laboratory, California Institute of

Technology, under a contract with the National Aeronautics and Space

Administration. Reference herein to any specific commercial product,

process, or service by trade name, manufacturer, or otherwise, does not

constitute or imply its endorsement by the United States Government or the

Jet Propulsion Laboratory, California Institute of Technology. This work

was supported by NASA flight projects.

Steven M. Guertin is with the Jet Propulsion Laboratory, California

Institute of Technology, Pasadena, CA 91109 (USA), phone: 818-393-6895,

e-mail: steven.m.guertin@jpl.nasa.gov.

Sergeh Vartanian is with the Jet Propulsion Laboratory, California

Institute of Technology, Pasadena, CA 91109 (USA), phone: 818-354-1390,

e-mail: sergeh.vartanian@jpl.nasa.gov.

© 2017 California Institute of Technology. Government sponsorship

acknowledged.

mailto:steven.m.guertin@jpl.nasa.gov
mailto:steven.m.guertin@jpl.nasa.gov
mailto:steven.m.guertin@jpl.nasa.gov
mailto:steven.m.guertin@jpl.nasa.gov
mailto:steven.m.guertin@jpl.nasa.gov
mailto:steven.m.guertin@jpl.nasa.gov

2

the e500 cores in the P2020. The arrangement of test

hardware is given in Fig. 1.

B. Event Types

We have established the following as event types that can

be identified by our test software and hardware during SEE

exposure:

1) Register SBU – a single bit changes in a processor

register

2) Register MBU – a register changes its value

completely –note that all observed register MBUs were

consistent with complete value changes, rather than two-

or three- bit errors

3) L1 invalidates – an L1 cache line (with parity

protection disabled) is lost. We believe this occurs when

the disabled parity protection system encounters a parity

error and interprets it as a cache miss.

4) L1 SBU – this is a reported parity error when

parity is enabled in the L1 cache. This causes a detected

loss of data.

5) L1 parity invalidations – this is when a parity

protected L1 cache loses a valid line of data with no other

warning. This causes silent data corruption (SDC).

6) L2 SBU – a bit error observed in L2 data (we test

L2 with EDAC disabled, and as regular memory – so that

tag errors are not tested)

7) External memory errors

8) Watchdog – this is a general error in the watchdog

system (incorrect watchdog timeout, incorrect change in

watchdog status)

9) Ethernet packet error – this is when a packet is

received by, or transmitted from, the DUT with an error

in it.

10) Flash Memory – errors reading or writing flash

memory using external debugging tools

11) Crashes – this is when a CPU core fails with no

other indication of problems. Sometimes an exception

occurs before a crash, but in those cases it is expected

that a crash will not occur (to be clear, if the exception is

not properly handled, then the processor may crash after

the exception, but this is a software problem rather than

an inherent hardware SEE sensitivity.

12) Strange Events – All other event types that could

result in undetectable erroneous operation are

individually indicated. Usually these are actually register

SBUs that impact how a given test runs, but in some cases

the behaviors may indicate a different problem. We are

not able to differentiate anything other than a potential

SBU sensitivity.

C. Test Algorithms and Methods

In this section provide information on the test algorithms

and methods used to test for the event types indicated in the

previous section.

Register tests were performed by writing a known value to

a target register or set of registers, then the algorithm waits a

given period, after which the registers should are read to

observe SEEs and then the test repeats. This test is

performed by writing values to registers before the beam is

turned on; the beam is then turned on and fluence is collected

on the DUT while it holds static data; and finally, after the

beam is turned off, the stored values can be read to determine

errors. This testing collects SBUs and MBUs in registers.

Register testing was also performed using an external

debugger that could directly read and write the registers, with

essentially the same sort of test approach, however the results

are only provided in a qualitative format.

L1 cache testing was performed in three ways. First, when

parity protection is disabled and the cache is tested by loading

a known value and having the cache sit idle during exposure.

Second, when parity protected is enabled and the test

algorithm is identical (cache is inactive during exposure).

And, third, by actively using the cache during irradiation – by

constantly writing and reading from the cache.

When parity protection is disabled, cache lines are

invalidated when a parity event is detection. (This is an

interpretation of the events we observe – specifically, we

observe no actual bit errors in the caches when parity is

disabled. Instead, we observe cache lines invalidated with a

cross section that is consistent with the sum of the cross

sections for all the bits in a given cache line). We also

observed exceptions when parity protection was enabled (but

these exceptions caused the test program to restart the test

loop, and undercounts events). With the parity protection

enabled, these events are expected to be capturable by the

operating system (OS) – and if the OS is configured for

write-through caches (a mode that is almost never used),

these events will be silently repaired and the user will be

unaffected. We also observed invalidations when the parity

protection was enabled, and we expect these would cause bad

data to get into a running program with no notification to the

user or operating system. These cache tests are performed in

the same manner as the register tests. Namely, the given

memory range is loaded with a known data pattern, then it is

left to idle while the beam is applied to the DUT,

periodically, the system is told to wake up and check the

cache for errors, then refresh the data in the cache.

The L2 cache was tested in cache as RAM mode, with the

built-in error detection and correction (EDAC) disabled, so

that bit errors could be observed. This mode disables the

cache tag information, which limits the collection of cache

state error data, however, we interpret the cache state bits to

be similar in SEE sensitivity to the data bits. The L2 cache

testing is performed with the same type of algorithm as the

tests for the L1 cache. Namely, the cache is loaded with a

known value; the software is then put in an idle mode; the

DUT is irradiated; and after irradiation is complete, the DUT

is interrogated to determine what SEEs were collected.

External memory interfaces were tested with one test

program that performs writing and reading of external

memory constantly during irradiation. No external memory

errors were ever observed during this test, but the crash

sensitivity of the processor increased significantly (see

below). This test is activated and allowed to run

3

continuously during exposure. If any events occur,

exceptions are logged and can details be retrieved provided

the test software does not crash. If a crash occurs, it almost

always requires immediately stopping the beam exposure and

performing algorithms to attempt to recover the DUT. In

practice, it is usually necessary to at least reset the DUT,

however we usually power-cycled the DUT after crashes.

The watchdog system was tested in a few different

configurations, observing different versions of machine

checks related to time-outs on the watchdog system. If a

timeout or full watchdog error is erroneously observed, it is

an error. The test algorithm for this testing involved

configuring the timeouts for two levels of watchdog machine

checks. We then observed if the configuration/control of the

watchdog indicated proper transitions of watchdog state

during irradiation. Any unexpected or missed watchdog

exceptions were recorded.

The Ethernet system was tested by configuring a port to

send UDP packets which were picked up by a second

computer and checked for incorrect data. Ethernet was tested

at two speeds – 237 kbps and 44 Mbps. Any errors in UDP

packets were recorded as errors. Lost UDP packets were

ignored because they never exceeded 1% of packets, which

was indistinguishable from rate observed without radiation

present. Ethernet testing was performed by allowing U-Boot

to send UDP packets and then hijacking the Ethernet and

DMA settings used in order to repeatedly send duplicate

packets. The Ethernet test ran continuously during exposure,

and any significant delay in data transfer would be noticeable.

Flash memory was tested by using an external debugger to

perform flash writing or reading during exposure. Prior to

use, a known test file was uploaded to the flash memory.

Reading during exposure was checked for errors by

comparing the read file to the source file. Similarly, after

writing during exposure, we read back, after exposure, to see

if the writing resulted in any errors. These tests were entirely

depended up on the operation of the BDI3000 debugger

which was used to control the Flash controller on the P2020.

Crashes are a general condition where a CPU stops

interacting with the test system. In this work, a crash is

possible during any other test, and what it actually means is

context-dependent. We collect crash data from every test

algorithm described here. The actual cause of a crash is not

known (this is somewhat different than other test groups may

define, because this P2020 testing is the result of a significant

amount of software development, and if we know what is

causing the crash we design the software to not be vulnerable

to that sensitivity – within reason). We expect these, and a

large percentage of the other errors described here, would

result in single event functional interrupts (SEFIs) in real

systems, but we do not try to separate out SEFIs in this work

because the results would depend heavily on the exact test

program used. In fact, for some of the data reported here,

crashes are split into two types – those occurring during

external memory testing, and those occurring in every other

test. When actively stressing external memory, crashes are

more than an order of magnitude more common.

Strange events are tested in a similar way to crashes. All

test algorithms were used to collect strange events. In

general, we do not try to distinguish strange events for the

purposes of developing SEE rates. Instead, we indicate the

qualitative behavior during a strange event and indicate if it is

consistent with a predicted vulnerability of the code (for

example, loops used to control execution duration can easily

be altered by a bit flip in a significant bit, causing a dramatic

increase or decrease in loop execution duration).

III. PROTON RESULTS

A. Register SBU

The sensitivity of the registers to SBUs is shown in Figure

2. As with most of the results in this section, the data are

presented with boards presented side-by-side, and include

results from earlier work [3] for comparison.

Figure 2: Register SBU cross sections for P2020 all test boards and old

data. Note that all five new boards are presented, with '-indicating testing at

MGH. Other points were taken at TRIUMF. "0032'-200" was taken at MGH

with 200 MeV protons. All others were taken at 100 MeV. The NEPP and

MISSE-X points come from earlier work which was previously reported in

[3].

B. Register MBU

The sensitivity of the registers to proton-induced MBUs is

shown in Figure 3.

4

Figure 3: Register MBU cross sections for P2020 all test boards and old

data. See the caption in Fig. 2 for more information on the different test

boards and conditions.

C. L1 Cache Invalidations – Parity Disabled

The sensitivity of the L1 cache to proton-induced line

invalidations when parity protection is not enabled is shown

in Figure 4.

Figure 4: Sensitivity of P2020 to cache line invalidations when parity is

not enabled. See Fig.2 for information about the different boards and test

conditions.

D. L1 SBUs – Parity Enabled

The sensitivity of the L1 cache invalidations and parity

SBU events are compared in Fig. 5.

Figure 5: The L1 Cache SBU cross section, as invalidations (left points)

and parity events (right points). Prime marks, ‘, indicate data taken at MGH.

Board 0017 data from MGH at multiple energies combined in the parity SBU

data analysis.

E. L1 Cache Invalidations – Parity Enabled

The sensitivity of the L1 cache to proton-induced line

invalidations when parity protection is enabled is shown in 6.

These events would lead to undetected erroneous operation of

a real system.

Figure 6: Sensitivity of L1 cache to line invalidations when parity is

enabled. See Fig. 2 for information about the different boards and test

conditions.

F. L2 Cache SBUs

The cross sections for bit upsets on each of the five test

boards are compared, both by facility (primed points are from

MGH, unprimed from TRIUMF), and to the earlier NEPP

and MISSE-X data in Fig. 7.

5

Figure 7: The cross section for bit upsets in the L2 cache is shown for the

three test boards, compared to the earlier NEPP and MISSE-X results. Note

that for most data points, the error bars are smaller than the data points. Data

from MGH is indicated with a prime mark, ‘. MGH data from 0017 combine

100 and 200 MeV results.

G. CPU Crashes

After the events listed above, a high occurrence event type

is for a CPU core to crash, resulting in no communication

from that CPU core until it is reset or power-cycled (we

routinely power-cycled, but usually reset is sufficient to

restart). For this error type, we observed a significant

difference depending on whether or not we were running the

test program that performs external memory reads and writes

during exposure. The sensitivity for these events to protons

is presented in Figure 8. Note the number of test cases and

the clustering of the results. The memory and non-memory

tests are then combined to provide the “total-“ points. This

indicates the memory tests are 50-100x more prone to crashes

than other test types. We believe these are more indicative of

an actual system with high memory usage (such as a standard

operating system).

Figure 8: Sensitivity of P2020 DUTs to crashes. In this case some of the

data were taken while running small test programs with minimal external

memory requirements. These are the Non-mem points. The remaining data

were taken while running an off-chip memory test. The off-chip access

dramatically increases the device crash sensitivity.

H. Strange Events

The final workshop will also provide data on the sensitivity

of the P2020 to strange events, which are very similar to

crashes, but have other symptoms than crashes. The primary

quality of these events that we wish to highlight is that they

are believed to cause incorrect behavior without being

identifiable by any error protection.

IV. HEAVY ION RESULTS

A. Register Sensitivity

Heavy ion register sensitivity was measured and is shown

below in Fig. 9. Note that the large error bars (spanning four

orders of magnitude) are actually situations with 0 counts that

could not be cleanly shown on this figure. Three new boards’

(0033, A1, and A3) data re compared to old data taken for the

NEPP program.

Figure 9: Register SBU sensitivity for P2020 is shown, comparing three

new boards to old data. Note that the large error bars (four orders of

magnitude) reflect conditions with no counts (0 events).

B. L1 Cache Sensitivity

L1 cache sensitivity is shown in Fig. 10. Note this also

compares L2 cache sensitivity, and block errors, which are

the same as line invalidations with parity enabled. Block

errors are plotted as device cross section, while L1 and L2 bit

sensitivity is plotted as per-bit cross section.

Figure 10: Comparison of L1 and L2 bit sensitivity and L1 block errors

(line invalidations).

6

C. L2 Cache Sensitivity

The sensitivity of the L2 cache bits during this testing is

presented in Figure 11, shown separately from the previous

figure. Also in the figure is a comparison to the earlier

reported data [3].

Figure 11: L2 Cache SBU sensitivity to heavy ions for new data and old

data. The results are essential identical. Note that error bars are smaller than

the plotting symbols.

D. Flash Sensitivity

No events were observed during testing of the Flash

memory controller (keep in mind that only the P2020

processor was irradiated). The limiting cross section for

Flash memory sensitivity is given in Fig. 12, below. All data

points represent only limiting cross section.

Figure 12: The limiting cross section for possible Flash controller

sensitivity (no events were seen to affect the Flash memory).

E. Watchdog Sensitivity

Watchdog testing showed no discernable watchdog events.

The data taken show a limiting cross section of less than

1×10-5 cm2/device.

F. Ethernet Sensitivity

During testing, no errors were observed during Ethernet

packet transfers at any speed. We did lose approximately 1-

3% of all packets that were sent, however this number did not

significantly change with and without the beam. Packet loss

is a standard behavior of Ethernet protocols. In a TCP/IP

system, packet loss is masked by the protocol, which

automatically requests resending of dropped packets. We

used UDP, which provides packets as-transmitted, and lost

packets are simply lost.

The primary limitation of the Ethernet results was the

signal to noise ratio. In this case, the noise was the crash rate

of the test devices. Ethernet errors were significantly below

the crash sensitivity. This is shown in Fig. 13. which

indicates, in the data points, the cross section for device

crashes. The region below the data points is the limiting

cross section for packet corruption (of any kind), normalized

to packets sent, which can be observed to be on the order of

100,000s of packets sent during testing, with no errors.

Although it is possible to improve detection of the signal (lost

packets) by increasing the total amount of testing performed,

it is unclear how to do this in a useful way, because

increasing the beam flux actually increases the noise while

reducing the signal. Ideally, we would collect data over a

very long time with increased overall fluence, but not flux.

However, this is not practical.

Figure 13: The crash sensitivity of the P2020 is compared to the limiting

cross section for packet corruption. This is somewhat complicated by the

fact that the cross section per packet should be corrected by the packet up

time.

G. Other Results

Heavy ion results will also be presented in the full

workshop for registers, L1 cache, watchdog timers, crashes,

and rare events.

V. CONCLUSION

Although the P2020 processor has undergone a revision

between previously reported testing and the present testing,

the SEE sensitivity is essentially unchanged. The present

data set increases the amount of data available to the point

that a more viable qualification approach may be taken,

though the present data is not a qualification dataset.

The heavy ion results for this effort are summarized below,

with highest tested LET, and cross section at highest LET.

Note that the onset for all events was observed to be 1 MeV-

cm2/mg, with most events having a clear onset, or being

7

statistically limited at all LETs so that no good onset could be

established.

1. Register SBU: 1.10×10-9 cm2/bit

2. Register MBU: 1.10×10-9 cm2/bit

3. L1 Cache Invalidates: 1.51×10-9 cm2/bit

4. L1 Cache Parity Events: 2.23×10-9 cm2/bit

5. L1 Cache Invalid w/Parity: 9.75×10-5 cm2/device

6. L2 SBU: 3.10×10-9 cm2/bit

7. Flash 1×10-5 cm2/device

8. Watchdog 1×10-5 cm2/device

9. Ethernet 1×10-11 cm2/packet

10. Crash Sensitivity (estimated) 10-5 - 10-3 cm2/device

11. Strange Events (estimated) 10-5 cm2/device

The proton results for this effort are summarized below

(cross sections do not significantly change between 50 and

200 MeV):

1. Register SBU: 2.69×10-15 cm2/bit

2. Register MBU: 2.69×10-15 cm2/bit

3. L1 Cache Invalidates: 1.19×10-14 cm2/bit

4. L1 Cache Parity Events: 1.19×10-15 cm2/bit

5. L1 Cache Invalid w/Parity: 1.09×10-10 cm2/device

6. L2 SBU: 8.35×10-15 cm2/bit

7. Crash Sensitivity (regular): 1.41×10-12 cm2/device

8. Crash Sensitivity (memory): 7.90×10-11 cm2/device

9. Strange Events: 2.60×10-12 cm2/device

VI. ACKNOWLEDGMENT

The research was carried out at the Jet Propulsion

Laboratory, California Institute of Technology, under a

contract with the National Aeronautics and Space

Administration. This work was supported by the NASA

Electronic Parts and Packaging (NEPP) program. The

authors would like to thank Jeff George and Rocky Koga of

The Aerospace Corporation for support with beam

availability and discussions. Government sponsorship is

acknowledged.

Reference herein to any specific commercial product,

process, or service by trade name, trademark, manufacturer,

or otherwise, does not constitute or imply its endorsement by

the United States Government or the Jet Propulsion

Laboratory, California Institute of Technology.

VII. REFERENCES

[1] "Proton 400k-L™ Single Board Computer,"

http://www.spacemicro.com/assets/datasheets/digital/slices/proton400k.

pdf, (accessed 1/2017).

[2] BAE Systems “Processors” brochure, http://www.baesystems.com/en-

us/download-en-us/20151109141738/1434554723043, (accessed

1/2017).

[3] S. M. Guertin, M. Amrbar, “SEE Test Results for P2020 and P5020

Freescale Processors”, Radiation Data Workshop, IEEE, 2014

	I. Introduction
	II. Test Setup
	A. Test Boards and Support Equipment
	B. Event Types
	1) Register SBU – a single bit changes in a processor register
	2) Register MBU – a register changes its value completely –note that all observed register MBUs were consistent with complete value changes, rather than two- or three- bit errors
	3) L1 invalidates – an L1 cache line (with parity protection disabled) is lost. We believe this occurs when the disabled parity protection system encounters a parity error and interprets it as a cache miss.
	4) L1 SBU – this is a reported parity error when parity is enabled in the L1 cache. This causes a detected loss of data.
	5) L1 parity invalidations – this is when a parity protected L1 cache loses a valid line of data with no other warning. This causes silent data corruption (SDC).
	6) L2 SBU – a bit error observed in L2 data (we test L2 with EDAC disabled, and as regular memory – so that tag errors are not tested)
	7) External memory errors
	8) Watchdog – this is a general error in the watchdog system (incorrect watchdog timeout, incorrect change in watchdog status)
	9) Ethernet packet error – this is when a packet is received by, or transmitted from, the DUT with an error in it.
	10) Flash Memory – errors reading or writing flash memory using external debugging tools
	11) Crashes – this is when a CPU core fails with no other indication of problems. Sometimes an exception occurs before a crash, but in those cases it is expected that a crash will not occur (to be clear, if the exception is not properly handled, then...
	12) Strange Events – All other event types that could result in undetectable erroneous operation are individually indicated. Usually these are actually register SBUs that impact how a given test runs, but in some cases the behaviors may indicate a di...

	C. Test Algorithms and Methods

	III. Proton Results
	A. Register SBU
	B. Register MBU
	C. L1 Cache Invalidations – Parity Disabled
	D. L1 SBUs – Parity Enabled
	E. L1 Cache Invalidations – Parity Enabled
	F. L2 Cache SBUs
	G. CPU Crashes
	H. Strange Events

	IV. Heavy Ion Results
	A. Register Sensitivity
	B. L1 Cache Sensitivity
	C. L2 Cache Sensitivity
	D. Flash Sensitivity
	E. Watchdog Sensitivity
	F. Ethernet Sensitivity
	G. Other Results

	V. Conclusion
	VI. Acknowledgment
	VII. References

